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ABSTRACT

Gerdien condensers for measuring electrical conductivity,
ion mobility and charge number density were flown in recent
rocket programs to investigate the high-latitude middle
atmosphere. The instruments were launched in two co-
ordinated programs (Aurorozone I and II) at Poker Flat,

Alaska to study the effects of auroral energetics on
electrical parameters and in a solar eclipse rocket program

at Red Lake, Canada. The design of the Gerdien condenser
instrumentation for the Aurorozone II program and the solar
eclipse program is considered. In addition, electrical
parameters measured for the two auroral programs are presented
and discussed, The initial results from the measurements

indicate that high-latitude middle atmosphere electrical

parameters are strongly influenced by the auroral energetics.
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CHAPTER 1

INTRODUCTION

1.1 Middle Atmosphere Ionization Sources

The middle atmosphere is generally considered to include
the stratosphere, mesosphere and lower thermosphere. 1In
altitude, this is the region of the atmosphere between
approximately 15 km and 100 km., In situ measurements of
middle atmosphere parameters are largely accomplished using
sounding rockets since most of this region is too high for
balloons and too low for satellites. If the rocket-launched
instrument is deployed on a parachute, the measurement is
typically limited to altitudes below 90 km where the para-
chute becomes wind sensitive and stabilizes.

The ionization sources in this altitude region are of
solar and galactic origin. Under quiescent conditions,
ionization by galactic cosmic rays is the dominant source
for ions in the stratosphere and lower mesosphere [Webber
(1962); Velinov (1968)). This particular source obviously
shows no diurnal variation, but it is dependent on the
eleven-year solar cycle with the largest cosmic ray intensi-
ties observed during the period of minimum solar activity
[Pomerantz and Duggal (1974)). Also, the galactic cosmic ray
intensity 1is dependent on geomagnetic latitude (below 60°),
with the larger values occurring at the higher latitudes.

During the daytime, solar ultraviolet radiation is an




important ionization source in the mesosphere. In particular,
the photoionization of nitric oxide by hydrogen Lyman-a
radiation (1216 Z) is considered the dominant source for
positive ions under quiescent conditions. Other daytime
sources of secondary importance during quiescent conditions
include the photoionization of metastable molecular oxygen
(02('Ag)) by solar EUV radiation (A<1118 ;) and the ion-
ization of all constituents by solar X-rays (A<10 ;)

[Aikin (1972)].

At high latitudes, significant enhancements in ionization
are observed during periods of auroral activity. Energetic
electrons are an important ionization source in the mesosphere,
but normally they do not penetrate into the stratosphere.

The interactions between these energetic electrons and
neutral species result in a second source for ions which
is observed in the stratosphere; namely, ionization by
bremsstrahlung X-rays [Freyer (1969); Berger, Seltzer and
Maeda (1974)]. These two ionization sources associated
with auroral energetics are dependent on solar activity
and appear to be rather localized and variable over short
periods of time, Furthermore, ground-based riometers and
magnetometers indicate that these geomagnetic distrubances

occur more frequently at night.

1.2 Aurorozone Rocket Programs

Two coordinated field experiments (Aurorozame I and II)

were recently conducted to study the effects of auroral
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energetics on the high-latitude middle atmosphere. One
particular objective of these programs was to determine the
effects of these events on middle atmospheric electrical
parameters; particularly, electrical conductivity, ion
mobility and charge number density. Rocket-launched, para-
chute-borne Gerdien condensers for measuring these three
parameters [Pedersen (1964); Rose and Widdel (1972); Conley
(1974); Croskey (1976); Sagar (1976)] and blunt probes for
measuring electrical conductivity [Hale (1967); Hale,

Hoult and Baker (1968)] were flown in both of these programs.

The Aurorozone I rocket program was conducted during
September and October 1976 at Poker Flat Research Range,
Alaska (65°N, 173°W). An overview of the launch schedule
for the program is shown in Table 1-1. Two Gerdien con-
densers (G) and four blunt probes (BP) were successfully
flown during this period. In addition, measurements of
temperature (D), ozone (03) and X-ray energy levels (NT)
were obtained as part of this program. A list of supple-
mentary ground-based measurements are also included in
Table 1-1.

The Aurorozone II program occurred during March 1978
and also was conducted at Poker Flat, Alaska. A launch
schedule for this rocket program is shown in Table 1-2.

The Gerdien condenser was flown as part of an integrated
instrument package called the "XRG (X-ray —— Gerdien

condenser) payload." 1In addition to the Gerdien condenser

e P
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measurements, the instrument also measured X-ray energies
and vertical electric field strength. The obvious advantage
of this system is the ability to simultaneously measure

both the X-ray ionization source and the associated electrical
parameters. The flight configuration and size of this
relatively sophisticated instrument were kept small enough
to be launched on a super Arcas rocket and deployed at
apogee on a stabilized parachute (the disc gap band). In
addition to five successful XRG payload flights, additional
measurements of electrical conductivity (BP), temperature
(D), ozone (03) and X-ray energy levels (NT) were obtained

in this program.

1.3 Thesis Research

The development of the Gerdien condenser instrumentation
included with the XRG payload 1is considered in this thesis.
More recently developed circuitry designed for Gerdien
condensers and a blunt probe flown in the February 1979
solar eclipse rocket 4ig also included. Finally, the Gerdien
condenser and blunt probe measurements from the Aurorozone

rocket programs are presented and discussed.




CHAPTER 11

GERDIEN CONDENSER OPERATION

2.1 Theory of Charged Particle Collection

A Gerdien condenser consists of a pair of concentric
cylindrical electrodes, through which a well-defined axial
flow geometry is developed. By proper biasing of the
cylindrical electrodes and measuring the resulting collected
ion current flowing through the aspirator, it is possible
to determine the electrical conductivity, ion mobility and
charge number density of the air sample. Determining the
ion mobility and charge number density also requires that
the air flow through the aspirator be known. In this section,
the appropriate equations for determining these electrical
parameters are presented, Further treatments of this sub-
ject are considered by Pedersen (1964), Conley (1974), Farrokh
(1975), Croskey (1976) and Sagar (1976).

A schematic of the Gerdien condenser electrode config-

uration 1s shown in Figure 2-1. The collector has a radius

of T, and a length 1, while the radius of the outer electrode

is r,. A uniform flow velocity <v> is assumed in the axial

direction.
If the outer return electrode is assumed to be at the

i potential of the atmosphere, then a negative voltage on the

collector will result in the collection of positive ions and

vice versa. For the Gerdien condensers flown in the Aurorozone
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rocket programs, the collection voltage applied between the
collector and return electrodes has the shape shown in Figure
2-2a and a period of approximately eight seconds. A possible
current response to the voltage waveform as measured by the
collector is shown in Figure 2-2b.

If we start at the origin (V = 0) and consider the
collection voltage being swept negatively, the initial slope

of the corresponding positive ion current response is pro-

portional to the total positive conductivity 04t
In(r /r.)
o 17 dI+
941 an1 - av b 0<t<ty, (2-1)
where M
Opq = b N+m e k+m (2-2)
m=1]

In this equation, we are assuming that there are M unique
positive ion mobility groups. Actually in the example of
Figure 2-2b, we are considering the case of M=3,

The break in the positive ion current response at t+1

e e y— ———

indicates that all of the ions of the highest mobility group E
b

k+1 are collected from the air sample. The collection

voltage value V at t is the minimum value for which a !

e

+1 +1

positive ion of mobility k entering the aspirator at a radial

+1

distance (ro - ri) from the collector can still be collected.

The equation for V+1 is

2
i (ro - riz) <y> ln(rolri)

+1 2 k 1 (2-3)

+1

PR, e e - - '

A ST ¥y
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Figure 2-2a. Gerdien Condenser Collection
(sweep) Voltage Waveform

le

Figure 2-2b. Gerdien Condenser Current
i .. Regsponse Characteristic (Example)
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Thus, solving for the collection voltage at t

+1

to determine the ion mobility value k+1‘

enables us \
Since at large negative collection voltages all the l
(

ions of mobility k will be collected from the alr sample,

+1

there is no further increase in I+ associated with this

mobility group. The slope between t and t is therefore

+1 +2

relatively smaller in value and is used to determine the

partial conductivity

o/ = I N e k (2-4)

This development continues with each additional breakpoint
indicating when the next highest mobility group is completely

collected from the air sample. The general equations to

determine the values of the different ion mobility groups

and their corresponding concentrations are:

(r 2 _ r 2) <v>1ln(r_/r,)
K - o i o' "1 (2-5)
+m 2 V+m1

%m = T+ (m+1)
N =
+m e k
+m

(2-6)

In reexamining Figure 2-2, there are several points
worth noting. First, for a sufficiently large negative
collection voltage such that all positive ions are collected
from the air sample, the current response becomes flat for
increasing voltage. This is the saturation mode of operation

and the positive ion saturation current is simply
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2 2
I+s = 'rr(ro - ) N, q<v> (2-7)

Under the saturation condition, the positive ion current
value may be used to determine the total positive ion number
density.

Secondly, the development for obtaining the equations
describing the collection of negative charge species is
similar. 1If free electrons are present as shown in Figure
2-2b, their mobility values are so much greater that there
appears at the origin approximately a step increase in cur-
rent. The I-V response of Figure 2-2b shows the collection
of electrons and two different negative ion mobility groups.
The corresponding equations for determining total negative
conductivity (0_1) and the mobility and density values of

ion mobility group k-p are respectively:

ln(rO/ri) dI_

a_, = T 35 t;_<t<0 (2-8)
where
P
o = I N e k (2-9)
1 a1 P -P
(r L r 2) <v>1n(r_/r,)
K = [s) i 0 i (2-10)
-p 2Vv 1
-P
(o -0
- P =(ptl) -
N_p .~ (2~11)

=P
In writing these equations, it is assumed there are P

different mobility groups for the negative charge speciles.

———

T
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Finally, if relatively immobile ions are present in

an air sample, the actual range of collection voltages for
the Gerdien condenser might not be sufficient to achieve
saturation. 1If this is the case, then one is unable to
determine the values for these less mobile groups which are

not saturated out nor the total ion density.

2.2 The Gerdien Condenser Launch

The Gerdien condensers in the Aurorozone I and II rocket
programs were flown on super Arcas rockets. Prior to the
launch, the instrument is calibrated by connecting a known- L

value resistor (R ) in parallel with the Gerdien condenser

CAL

electrodes. The electrometer's output response when the col-

lection voltage waveform is applied across the resistor is
received through the telemetry system and recorded on mag-
netiec tape.

The actual in-flight measurements are obtained after the
payload separates from the rocket at apogee and is descending

on a stabilizied parachute system. The telemetered in-flight

data are received by a ground-based system and recorded on

magnetic tape.

The probe's position and velocity during the flight

are obtained by using a radar. For the recent Gerdien

condenser flights conducted during the solar eclipse, how-

ever, a transponder was included with the transmitter

system to provide ranging information. The ranging data

along with the azimuth and elevation angles from a GMD-4
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telemetry receiving system were then used to determine the
probe's position and velocity. This particular transponder
system was used for rocket flights when radar tracking was
not available.

Upon completion of the rocket flight, the data are
played back onto a strip chart for reduction. The actual
equation used for scaling the data is dependent on the

probe's electronics, and 1s included in Chapter 4.
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CHAPTER ITI

INSTRUMENTATION DESIGN

3.1 XRG Payload Configuration

The sensor configuration for the XRG payload is shown
in Figure 3-1. As discussed previously, the XRG payload
combined a Gerdien condenser with an X~ray scintillation
detector and an electric field sensor. When the instrument
package is deployed on a parachute, the Gerdien condenser
is oriented downward. The air flow through the aspirator
is determined from the instrument's descent velocity which
is measured by a ground-based radar. Payload orientation is
determined using a two-axis magnetometer.

In flight, the aperture for the X-ray scintillation
detector 1s directed upward, The detector uses sodium
iodide (NalI) crystals which floresce when impacted by X-rays.
The resulting photons are detected by a photomultiplier
tube. The X-ray energies are measured in four different
ranges: 5-10 keV; 10-20 keV; 20-40 keV; and greater than
40 keV. 1In addition, a Geiger-Mueller tube for measuring
energetic electrons and monitoring cosmic rays was included.

The electric field sensor consists of a probe mounted
at the base of the parachute and connected to the payload
body by a two-meter wire which spirals around the parachute
lanyard. The vertical electric field is determined by

measuring the voltage between the probe and the payload

body.
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The transmitter and electronics are housed in a 10.2
cm diameter fiber glass cyvlinder which has a 1680 MHz micro-
strip-type antenna photoetche on the outside surface. The
PCM encoding system provides a bi-phase level output with
nine words per frame and eight bits per word at a bit rate
of 8k bits/second. The encoder input accepts a 0-5 V analog
voltage waveform. All of the electronics are powered by

six PMl silver cell batteries.

3.2 Gerdien Condenser Design for the XRG Payload

A sketch of the electronics system associated with the
Gerdien condenser is shown in Figure 3-2. The sweep voltage
waveform provides a known collection voltage waveform to the
guard portion of the inner collecting electrode. By connecting
the guard electrode to the electrometer's noninverting input
terminal and the collector to the inverting input terminal,
the collector is also "virtually" at the sweep voltage po-
tential. It was necessary to bias the outside skin of the 3
XRG payload at ground potential in order to keep the probe's
electronics compatible with the X-ray detector and the elec-
tric field probe,

A circuit diagram for the sweep voltage generator is
shown in Figure 3-3. The waveform shown in Figure 3-3 is
obtained by using an astable multivibrator followed by a
constant current run-down circuit. The sweep voltage ob-

tained at the output of the LM 264 operational amplifier

follower is connected to both the noninverting terminal of




FagOskars s i

T e e e e

. ———

18

(11 Puozo0101ny) wWa3IsLg OTUOIIIITY AISUSPUO) UITPIIYH

*Z-€ 21n81g

S¥3ILdIHS
T13A3 TosX) W31SAS
/ S¥3vJs (8x) AYLIN3I3L
39VLIT0A (1x) NOd
A
I 1
_ 43131 1dwY =

30N3¥34410

H3L4INS
q3A37

/ 43S
39v170A

1INJN¥1D  A_
AN
44
39VLI0A _ o
d33Ms A




19

(I1 2uozoloany) ITNOIF) 33e3I[0A doomg r+¢-~¢ 2an814g

arosi mgﬂ
AZI- AMA———4 T
AB2. oS!
A % oa VOSLNI
; , -
4 = 4H " \ H Jriece !
} o kfo| arlec
4 T ( H+ <o__n<% .—.
1 3sviion " arlee Syoor
] d3ams ¢ 9! L b3
bt . SOLONI —AAAA
1 3m»|m neE | =
{ NOLY 0! VOSLNI
L 8 2




20

the electrometer and a voltage difference amplifier.
Regulated voltage values of * 12 V were supplied to the
sweep voltage circuit using a LM 126H voltage regulator.

The current of charged particles drawn to the collector
is measured by an electrometer (Figure 3-2). The electro-
meter for the XRG payload uses a Burr-Brown 3523L operational
amplifier which has a nominal input bias current of 0.1 pA
and a 100 dB common-mode rejectior ratio. A Victoreen
MOX-400A resistor of value 1 x 109 ohms is used in the
feedback path. For supply voltages of * 12 V and a common-
mode voltage (the sweep voltage) ranging between * 8 V,
the electrometer's measurement range is approximately
* (2-3) nA.

After differencing the sweep voltage from the electro-
meter output signal, the data waveform is fed to three
parallel voltage scalers/level shifters (Figure 3-4). The
level shifting produces a 0-5 V analog signal compatible
with the PCM encoder. The scaling operation results in
data current ranges of approximately: * 2 x 1,0 nA
(Channel 1); *+ 2 x 0.125 nA (Channel 2) and ¢t 2 x 0.025 nA
(Channel 3). The multi-channel telemetry capability of the
XRG payload is advantageous in that it enhances the Gerdien
condenser's measurement range to approximately four decades.
The two less sensitive current measurements were allocated

separate telemetry channels while the most sensitive

current channel was assigned to a commutated channel. 1In




(11 @uozoloiny) SI23I3TYS T2437/s1dTED2g 288370A °*%=¢ 2an814

21

= 19y >n+
evd A|>§/)S(
0'01 % 0!
X
= 8y AS,
2w % ¥313N0¥12373
: AN
072 3N Ol e A— Wou4 »
x B
3
4 9 AG,
3 =
1
A ' % —AANAA
T N Ol

>




22

addition, monitoring of the sweep voltage and the battery
voltage levels was also telemetered on the commutated

channel.

3.3 Solar Eclipse Payload Configuration

The Gerdien condenser designed for the February 1979
solar eclipse rocket program included a magnetometer and
PCM encoder similar to those used with the XRG payload.

The remote launch site necessitated the inclusion of a
Space Data Corporation PWN-10A 403 MHz transponder for
ranging information. The transponder uses an 83 kHz pulse
waveform to modulate the plate voltage of the RCA 4048V3
1680 MHz transmitter. The antenna housing for this payload
was also a 10.2 cm diameter fiber glass cylinder with strip
line antennas for both recelving the upleg 403 MHz signal
and transmitting at 1680 MHz.

The relatively smaller payload length (48.9 cm) and
weight (2.930 kg) afforded a somewhat higher flight
apogee (nominally 80 km) where the payload separated from
the super Arcas rocket and was deployed on a stabilized
parachute (either a disc gap band or starrute).

At the time of this writing, only the launch dates and
times are known for the Gerdien condensers and blunt probes
flown in the solar eclipse rocket program. These launch

parameters are listed in Table 3-1.
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3.4 Gerdien Condenser Design for the Solar Eclipse Payload

A schematic for the Gerdien condenser electronic

system 1s shown in Figure 3~5. The sweep voltage waveform

is similar in shape but has approximately twice the range

as that used for the XRG payload. The noticeable difference
in operation is that the return electrode and payload skin
are biased at the sweep voltage and the inner guard electrode
is grounded, thus avoiding the need for a voltage difference
amplifier following the electrometer. The electrometer out-
put is connected directly to three parallel voltage scalers/
level shifters which in turn, are connected to individual

channels of the PCM telemetry system. As previously dis-~

cussed, the PCM encoder and transmitter system ex-

cluding the transponder are similar to these flown on
the XRG payload.

The sweep voltage circuit is a different design as
shown in Figure 3-6. This particular circuit produces a
periodic voltage waveform with negative-going ramp that
is limited by the two supply voltages, in this case * 16 V.

For the operational amplifiers (op amps) numbered one
to four, a LM224 quad op amp was used. Op amp number 5 is
a LM 741, The circuitry with op amp 1 forms a square wave
generator which can be monitored at Pl., The 2N3821 silicon
n-channel junction field-effect transistor (JFET) and op

amp 3 form a constant current sink for Cz. Op amp 2 1is

used as a comparator to give the negative~going voltage
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ramp a hard limit at approximately -15 V. The output of
the LM741 op amp follower is connected to the return }
electrode and it also drives an op amp inverter (number &)
axd another LM 741 op amp follower (not shown). This

additional op amp follower biases the payload skin at the

sweep voltage and avoids possible r~f noise leaking back to

the initial sweep output. The inverted sweep voltage

waveform is used for displacement current cancellation at

T e T

the electrometer input.

LT

The electrometer (Figure 3-5) uses the Burr-Brown

3523L operational amplifier with a Victoreen Hi-Meg feed-

back resistor (Rf) of either 5 x 109, 1 x 1010

1010 ohms. The current measurement range is approximately

or 2 x

(¢ 15/Rf) amperes. This particular current range is allo-
cated to one data channel, with current ranges 8 and 64
times more sensitive inputted to other separate data channels.
The Gerdien condenser displacement current associated
with the sweep voltage 1is large enough to saturate the most
sensitive current measurement range. Therefore, a scaled
inverted sweep voltage connected to a low leakage capacitor
is also supplied to the electrometer input to cancel the
other displacement current component. The very sensitive
electrometer and the appreciable electrode capacitance
(= 2 pF) make it necessary to strongly filter any noise
riding on the sweep voltage, thus reducing possible noise

displacement current to the electrometer input.
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The voltage scalers/level shifters shown in Figure
3-7 set the current range sensitivities and produce voltage

levels (0-5 V) compatible with the PCM encoder.

3.5 Gerdien Condenser Mechanical Design

The mechanical design of the Gerdien condenser for the
XRG and solar eclipse payloads is similar. A drawing of the
electrode configuration i1s shown in Figure 3-8.

The Gerdien condenser electrodes consist of an inner
collector with a guard electrode and an outer return elec-
trode. The collector and guard are copper, and are sepa-
rated and alligned by a nylon spacer. The collector's out-
side diameter is 1,587 cm and its length is 6.350 cm. A
brass threaded rod connects the collector and provides an
electrical conducting path to the electrometer. The guard
reduces fringing of the electric field at the joined end
of the collector and shields the collector's conducting
rod from r~f pickup and photoemission from the sun. The
collector also needs to be shielded from the sun by the
return electrode to avoid possible photoemission. The outer
return electrode is aluminium and has an inside diameter of
7.46 cm and a wall thickness of 0.079 c¢m. The free space
capacitance of this concentric electrode configuration is
approximately 2 pF.

The delrin piece to which the return electrode is
connected is flared to improve the air flow geometry through

the aspirator. The electrometer is housed within the
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delrin piece, with the electrometer circuitry contained
inside an aluminum cup. The aluminum cup shields the
electrometer circuitry from possible noise, and electrical
connections to the circuitry are made with Erie-003 rfi
filters.

The flared delrin piece fits to the fiber glass antenna
housing described earlier. Three bolts in the axial direction

align the printed circuit boards inside the antenna housing

and keep the entire instrument package together.




CHAPTER IV

HIGH-LATITUDE MIDDLE ATMOSPHERE ELECTRICAL PARAMETERS

Middle atmosphere electrical parameters measured in the
Aurorozone I and II programs are presented in this chapter.
The equation for reducing the Gerdienm condenser electrical
conductivity data, which is dependent on the electronics

and the preflight calibration, is also presented.

4.1 Aurorozone I Rocket Program

A list of the launch parameters for the Aurorozone I
rocket instruments measuring electrical conductivity 1is
presented in Table 4-1., Although the emphasis of this
research is concerned with the Gerdien condenser flights,
electrical conductivity data from the parachute-borne blunt
probes are included since these measurements are relevant

- to future discussion.
}i The electrode biasing scheme for the Aurorozone I

| Gerdien condensers (and also for the recent solar eclipse

: payloads —see Figure 3-5) involved biasing the outer return
electrode and payload skin at the sweep voltage with refer-
ence to the inner guard electrode (and virtually the collector).
Applying Equation 2~1 and 2-8 to this probe electronics

scheme, the equation for determining the positive and nega-

tive electrical conductivity values 1is

! . - ln(ro/ri) (th/dt)DATA (4-1)

- 2 I"RCAL (dV/dt)CAL

e Ll 4".4
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In this equation, r,» T and 1 are Gerdien condenser probe

i
dimensions as defined in Chapter 3. The calibration resistor

Finally, the expressions (dV+/dt) and

value 1is R DATA

CAL’

(dv/dt) are the time rates of change of the electrometer

CAL
output voltage in flight and during preflight calibration,
respectively. The procedure for obtaining these waveforms
is discussed in Section 2.2.

The electrical conductivity data for the Gerdien con-
denser flown at 0324 AST on September 21, 1976 are plotted
in Figure 4-1. The corresponding positive ion mobility and
charge number density values for this flight, which were
scaled using Equations 2-5 and 2-6, are plotted in Figures
4-2 and 4-3, respectively.

Electrical conductivity values for the blunt probes
flown on September 22, 1976 at 2200 AST and September 23,
1976 at 0137 AST are shown in Figures 4-4 and 4-5, respec-
tively.

The second Gerdien condenser flown in this program was
launched on September 23, 1976 at 0220 AST. The positive !
conductivity, ion mobility and charge number denisty data
for this rocket flight are plotted in Figures 4~-6, 4-7, and q
4-8, respectively,

Finally, the last two rocket payloads for measuring
electrical conductivity in the Aurorozone I program were

blunt probes launched on September 24, 1976 at 2254 AST and

September 30, 1976 at 0251 AST. The electrical conductivity
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data from these two rocket flights are shown in Figures 4-9

and 4-10 respectively.

4.2 Aurorozone II Rocket Program

Five Gerdien condensers--part of the XRG payloads--
and two blunt probes measured middle atmosphere electrical
parameters in the Aurorozone II program. Launch parameters
for these rocket flights are listed in Table 4-2. For the
XRG payloads, the outer return electrode and payload skin
were grounded and the inner guard electrode and collector
were biased at the sweep voltage (see Figure 3-2). With
this probe biasing configuration, it can be shown that
Equation (4-1) is still valid for reducing the electrical
conductivity values.

The Gerdien condenser electrical conductivity data for
the five XRG payload flights are presented chronologically

in Figures 4-11 to 4-15.
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CHAPTER V

DISCUSSION

The middle atmosphere electrical parameters measured

by Gerdien condensers and blunt probes in the Aurorozone

I and II rocket programs are discussed in this chapter. Geo-

magnetic conditions as determined from ground-based magne-
tometers and riometers at College Station and Fort Yukon,
Alaska are qualitatively described for the launches in
Tables 4-1 and 4-2. Although several flights in these tab
are classified as occurring during geomagnetically quiet
periods, probably the quietest period was the evening of

March 21, 1978.

5.1 Aurorozone I Measurements

The Gerdien condenser and blunt probe rocket launches
for the Aurorozone I program were all conducted at night
since this period is usually more geomagnetically active.
It also should be a somewhat simpler period for studying
auroral ionization effects since there is no influence at
higher altitudes from solar ionization sources.

Under geomagnetically quiet conditions, the dominant
ionization source in the gtratosphere and lower mesophere
associated with galactic cosmic rays, and it essentially
displays an altitude dependence proportional to that for
neutral number density. The corresponding altitude depen-

dence for electical conductivity in the galactic cosmic

les

is
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ray ionization region is nicely demonstrated by the low
altitude electrical conductivity data for the Aurorozone I
program. As an example, the positive ion conductivity data
for 2200 AST on September 22, 1976 are plotted inm Figure
5-1, with a piecewise linear fit constructed to the data
points. (Only positive ion conductivity data are shown for
the Aurorozone I program. The negative conductivity mea-

surements are generally comparable in value to the positive

conductivity data.) The straight line fit at the lower
altitudes is indicative of the altitude dependence of elec-
trical conductivity in the galactic cosmic ray ionization
region.

Above 50 km, the electrical conductivity values break
to the right, indicating a conductivity enhancement above
the associated galactic cosmic ray background level (shown
by the dashed line). Interestingly, it is also possible
to construct a straight line fit to these high altitude
data. The enhancement in conductivity is thought to result
from aurorally-induced bremsstrahlung X-ray ionization.

The breakpoint for the piecewise linear fit to the data
thus shows how low the bremsstrahlung X-ray ionization
penetrates into the atmosphere,

The presence of this additional ionization source at

higher altitudes is substantiated by the X-ray data obtained

from the two Nike-Tomahawk flights (September 21 and 23, 1976).

| - Energy deposition deduced from the X-ray energy data for

[ TR
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September 23 are shown in Figure 5-2 [Goldberg and
Hilsenrath (1978)]. Examining this figure, we see that the
energy deposited below approryimately 40 km is primarily
from galactic cosmic rays. In the 40 to 55 km altitude
region, ionization is largely associated with 5 keV
bremsstrahlung X-rays, At higher altitudes, 100 keV ener-
getic particles become an important ionization source.

The general altitude structure for the September 22,
1976 conductivity data is actually observed to some extent
in all of the Aurorozone I measurements. A composite of the
plecewise linear fits constructed for five sets of positive
conductivity data from the Aurorvzone I program is shown
in Figure 5-3., The legend in the figure identifies the
different curves and also indicates the corresponding
altitudes of the ionization breakpoints.

For the night of September 22 to 23, 1976 which was
the most active of the measurement period, the bremsstrahlung
X~ray ionization effects are observed as low as 45 km
(following an auroral event). In fact, the three sets of
data obtained during that night show the X~ray ionization
effects penetrating continually lower as the event progresses.
The data for September 21, 1976 were also obtained during
a period of geomagnetic activity. The activity for this
period was not as strong, as might be inferred from the
relatively higher ionization breakpoint (approximately 51 km).

The electrical conductivity data for 0251 AST on

" - e [

s b -8 2 sy
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September 30, 1976 were obtained during the quietest measure-

ment period of the Aurorozone I program., Based on the
conductivity enhancements observed above 54 km, it would
appear that this period was not actually that quiet. In
fact, there were probably ionization effects due to auroral
energetics present to some extent throughout the entire
measurement period.

Conductivity measurements for the three-launch sequence
on the night of September 22 to 23, 1976 are shown in Figure
5-4, With the data for 2200 AST used as the reference,
we see conductivity enhancements in the high altitude data
for 0137 AST which was the most active period during the
auroral event. The positive conductivity data obtained at
0220 AST following the event, however, show a recovery from
the conductivity build-up at higher altitudes. Interestingly,
at the lower altitudes where it appears the bremsstrahlung
X-rays do not penetrate, an overall increase in ion conduc-
tivity is observed.

As developed earlier, the Gerdien condenser measures
ion mobility and charge number density as well as electrical
conductivity. The ion mobility and charge number density
values for 0220 AST on September 23, 1976 are shown in
Figure 4-7 and 4-8, respectively. As many as three distinct
positive ion mobility groups were measured at some of the
higher altitudes. In general, it appeared that ion satu-

ration was not achieved which would imply that at least one
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additional mobility group with values to the left of the
dashed line was also present in the air sample. The
straight line in Figure 4-7 is drawn to fit the highest
mobility group, which is present over the entire altitude
region.

The positive ion concentrations corresponding to the
different ion mobility groups in Figure 4-7 are shown in
Figure 4-8. The highest ion mobility group has a concen-
tration of approximately 103 cm—3 over the entire altitude
region, with the less mobile ions having generally smaller
number densities,

If the ion mobility values (Figure 4-7) for the highest
mobility group and the corresponding number density values
(Figure 4-8) are used to compute electrical conductivity,
it is observed that this particular mobility group accounts
for the electrical conductivity component associated with
galactic cosmic ray ionization. The less mobile groups,
which are observed at the higher altitudes where there is
ionization by bremsstrahlung X-rays, appear to account for
the enhancement in conductivity above the galactic cosmic
ray ionization level. Possibly, the less mobile ion species
result directly from this additional ionization source, L
but more likely, the bremsstrahlung X-rays influence the
chemical processes in the region leading to the formation

of less mobile species.

Similar results are observed for the Gerdien condenser
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ion mobility (Figure 4-2) and charge number density (Figure

4-3) data for 0324 AST on September 21, 1976. It should be
noted that both Gerdien condenser rocket flights for the
Aurorozone I rocket program occurred during geomagnetically
disturbed conditions and thus no ion mobility and charge
number density data were obtained for quiet conditions.

As mentioned earlier, even the electrical conductivity

data obtained during periods which appeared from ground-
based measurements to be geomagnetically quiet were, in

fact, also affected by auroral energetics,

5.2 Aurorozone II Measurements

The XRG payloads flown in the Aurorozone II program
were heavier than the Gerdien condensers in the Aurorozone
I program, and thus measurements above 60 km are limited.
Futhermore, the Gerdien condenser launch schedule for the
Aurorozone II program is more diversified, including night-
time launches under both geomagnetically quiet (2052 AST
on March 21, 1978) and disturbed (0026 AST on March 27 and
0140 AST on March 29, 1978) conditions and launches during
morning twilight under geomagnetically disturbed conditions 3
(0649 AST and 0740 AST on March 29, 1978). The dots in
Figures 4-11 to 4-15 represent measurements for which the
positive and negative conductivity values are equal, The
Plus and minus signs include instances when there were

small differences in the respective positive and negative

conductivity measurements. In general, we see that the
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differences in the polar conductivity values at these alti-
tudes are relatively small.

The electrical conductivity measurements for March 21,
1978 (Figure 4-11) are in general agreement with what is
expected for geomagnetically quiet conditions. The altitude
dependence for electrical conductivity throughout the entire
measurement region would indicate that galactic cosmic ray
ionization is the dominant source for ions, and no noticed
ionization enhancements associated with auroral energetics
appear significant at the higher altitudes. A wave-like
effect on the conductivity data is observed at the higher

altitudes which possibly reflects the dependence of ion

mobility on pressure. Considerable payload swing was
observed during the flight making further reduction of the
data to determine ion mobility and charge number density a
difficult task.

The two nighttime conductivity measurements obtained
under geomagnetically disturbed conditions in the Aurorozone
I1 program demonstrate general trends consistent with the
data for the Aurorozone I program. If the electrical con-
ductivity measurements for March 21, 1978 (Figure 4-11)
are used as a reference, the data for March 27, 1978
(Figure 4-12) show enhancements in electrical conductivity
at all altitudes above 37 km. The nighttime electrical

conductivity measurements for March 29, 1978 (Figure 4-13)
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are relatively larger than the reference values for March
21, 1978 at all altitudes.

Probably the most interesting result is observed in
comparing the three sets of nighttime data at the lower
altitudes. While there is generally good agreement between
the data sets for March 21 and 27, 1978, which is to be
expected if the ionmization is principally controlled by
galactic cosmic rays, the nighttime measurements for March
29, 1978 show a marked enhancement in conductivity. Thus,
it would appear that the auroral energetics do, on occasion,
influence ionization processes even in the lower stratosphere.

The morning twilight data for 0649 AST and 0740 AST
on March 29, 1978 (Figures 4-14 and 4-15, respectively)
were obtained during a geomagnetically disturbed period.

The battery life was relatively short for the payload flown

at 0740 AST, and thus electrical conductivity data were
obtained only down to 43 km, If the electrical conductivity
measurements for either of these flights are compared to

the reference data of March 21, 1978 obtained under geo-
magnetically quiet conditions, there are observed conductivity
enhancements at higher altitudes which are again thought to

be associated with auroral energetics.

In comparing the two morning twilight conductivity
measurements, it is observed that the conductivity values

for 0740 AST are relatively larger than these for 0649 AST.
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This early morning enhancement in conductivity at these

altitudes is thought to be at _east partly attributed to

a photodissociation process resulting in the formation of

more mobile ion species [Mitchell,

Sagar and Olsen (1977)].
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CHAPTER VI

CONCLUSIONS

6.1 Summary

The initial results from high-latitude ionization
studies of the middle atmosphere indicate that auroral
energetics strongly influence electrical parameters in this
altitude region. Nighttime measurements of electrical

conductivity from two field programs at Poker Flat,

Alaska —— Aurorozone I and II showed enhancements in
electrical conductivity during periods of auroral activity.
These conductivity enhancements in the stratosphere are
thought to result from ionization by bremmstrahlung X-rays
emitted at higher altitudes. The region in which the
conductivity enhancements were observed corresponds to the
altitudes in which X-rays were measured by other experiments
flown in these programs.

The Gerdien condensers were also used to measure ion
mobility and charge number density in addition to electrical
conductivity. The ion mobility data from the two Gerdien
condenser flights in the Aurorozone I program indicate the

presence of additional lower-valued ion mobility groups in

the region where the bremmstrahlung X-ray ionization is

observed. Furthermore, the conductivity values computed
using these particular mobility groups and their corresponding

density values account for the bremmstrahlung X-ray-associated
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conductivity enhancements. Thus, it appears that the ion
chemistry is modified by the auroral energetics, resulting

in the formation of new and different ion species.

6.2 Suggestions for Future Research

Further studies are needed to better understand how
middle atmosphere electrical parameters and other neutral
parameters are affected by auroral energetics. Such programs
preferrably should include integrated instrument packages
such as the XRG payload which is capable of measuring both
the source parameters and the affected electrical parameters.
Finally, a complete understanding of auroral related energetics

and their influence on ion chemistry also requires that

measurements be made during geomagnetically quiet conditioms.

JR————
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